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If one end of a rope is tied to a pole and the other end is pulled, the hitch may slip or it
may hold fast. In this paper, we present a method of predicting which will happen. The
topology of the hitch determines an inequality involving the coefficients of friction

characteristic of the rope and pole. If this inequality is satisfied, the different turns of the
hitch press on each other, and on the pole, to produce a self-locking unit that can withstand

an arbitrarily strong pull.

I. INTRODUCTION

The introductory physics course probably exceeds all
other courses in the extent to which it gives a student an
understanding, in terms of a few basic principles, of phe-
nomena he encounters in everyday life. These points of
contact between physical theory and everyday experience
are of great pedagogical value. They emphasize that physics
is concerned with the real world, and they illustrate the
abstractions we have to make to express a complex situation
in terms amenable to a simple analysis. We present here a
somewhat unusual example of the application of physics to
everyday life: the role of friction and feedback in producing
the remarkable holding power of knots and hitches.

We confine our attention in this paper to hitches, by
which we mean knots in which a rope is tied to a pole or
other cylindrical object. One end of the rope is tucked under
one or more of the turns the rope makes around the pole.
The other end is subjected to a pull, and a successful hitch
will support a strong pull without slipping. This ability to
withstand a strong pull relies upon the friction involved
when rope rubs against rope and rope rubs against pole. It
also depends upon the topology of the hitch. Anyone who
has attempted to tie a nylon fishing line to a steel hook
knows that some hitches are secure, and others are not. The
object of this paper is to obtain a criterion involving friction
and configuration which will indicate whether or not a hitch
will hold. ,

Sections II and III of this paper are suitable for an in-
troductory course. They illustrate the cooperative effect of
the different segments of a hitch in forming a self-locking
unit. One interesting aspect of this analysis is that it deals
almost exclusively with inequalities. Also suitable for an
introductory course are the general conclusions presented
at the end of Sec. V, concerning the topological features
possessed by the best hitches. The analysis of the general
hitch given in Sec. IV uses matrix methods that are more
appropriate for an intermediate-level mechanics course.

II. FRICTION

Let u be the coefficient of static friction between the rope
and the pole. Then the pole can exert a tangential force on
the rope, so that T in Fig. 1 can exceed T’ (and vice versa).
If T, > T, the rope will not slip as long as the inequality

T2 < T] exp(uﬂ) (T2 > T]) (1)

is obeyed.! Here 8 is the angle (in radians) subtended at the
axis of the pole by the arc along which the rope and pole are
in contact.
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In the following applications of (1), # will always be an
integral multiple of 2#. It will simplify our notation if we
rewrite (1) as

T, < Te® (n turns), (1)

where

€ = exp(2mp). (17)

Figure 2 shows a situation in which a segment of rope is
squeezed against the pole by another segment passing over
it. The friction involved here allows the tension in the lower
segment to differ on the two sides of the crossing. The lim-
iting value of this difference is proportional to the force on
the lower segment perpendicular to the surface of the pole,
which is in turn proportional to the tension in the upper

segment ‘

T2 < T| + T]T (T2 > T]). (2)

The constant » in (2) depends upon coefficients of friction,
and upon the ratio of the diameters of the rope and pole.
Note that we have assumed that the tension in the upper
segment does not change at the crossing. This would be
approximately the case if the friction between the ropes was

-much less than the friction between the rope and the pole.

In Sec. VI we will discuss the consequences of relaxing this
assumption. Measurements with braided nylon string on
a smooth steel rod yielded  ~ 0.2 and ¢ = 4.

III. A SIMPLE EXAMPLE: THE CLOVE
HITCH

Figure 3 shows a clove hitch. Suppose that the tensions
increase as we follow the rope around the hitch, so that

t0511St2$t3Sl4.

Application of (1°) and (2) yields the following conditions
that must be obeyed if the hitch is not to slip:

t < to+ nta, (3a)

t) < e, (3b)

13 = el (3¢)

t4 2 t3+ qtr < (e + )ty (3d)

By combining (3a) and (3b) we get
1 < e(to + nt2),
t2(1 — ne) < ety 4)
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Fig. 1. Friction between rope and pole allows tensions T and T to dif-
fer.

We must now distiniguish between two situations.
(a) Low friction:
ne<1. (5a)

In this case the quantity in parentheses on the left-hand side
of (4) is positive, so that (4) and (3d) can be rewritten as

12 = [e/(1 = ne)]t,
ta < [ele + m)/(1 — ne)]to. (6)

Thus the hitch will not slip, provided that 74 does not exceed
to by a factor greater than that given by (6).

(b) High friction:
ne> 1. (5b)

In this case the quantity in parentheses on the left-hand side
of (4) is negative, and (4) is valid for any non-negative
tensions ?p and ¢,. It is valid even if ¢y = 0, and for arbitrarily
large ¢,. Since ¢, can become arbitrarily large, so can #,4.
Thus in this high-friction situation, the clove hitch of Fig.
3 accomplishes what we require from a hitch: it will with-
stand an arbitrarily strong pull on one end while the other
end hangs loose. In this situation we say that the hitch
“holds fast.”

Our aim is to find, for a hitch of any given topology, the
limiting condition analogous to (5b). We will see that many
hitches are superior to the clove hitch, in the sense that they
will hold fast with less friction (smaller ,u).

IV. THE GENERAL HITCH

The methods used in the previous example can be gen-
eralized as follows:

(a) Let us divide the hitch into segments. We start at
the free end. The first segment starts where the free end of
the rope passes under one of the turns. We follow along the
rope until it again passes under a turn. This marks the end
of the first segment, and the begirining of the second seg-
ment. We continue in this way along the hitch, each new
segment starting where the rope passes under one of the

T /47‘

Fig. 2. Upper segment, with tension
T, squeezes the lower segment
against the pole.

Tv/ \‘\’\
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Fig. 3. Clove hitch.

turns of the hitch. We will use 7 to be the tension in the
rope at the beginning of the ith segment. The last segment,
the one that leaves the hitch at the high-tension side, will
be called segment number g.

(b) Let n; be the number of turns around the pole
made by the ith segment. Since T is the tension at the be-
ginning of the ith segment, ¢*T; is the tension at the end of
the ith segment,

(c) Let b; be the number of the segment under which
the ith segment begins.

(d) Let m; be the number of turns from the start of the
b; segment to the place where it passes over the ith segment.
Since the tension at the beginning of the b; segment is T},
the tension where it passes over the ith segment is e” T},
Thus (2) requires that

T; < ¢®~1Ti— + ne™iTy, (Ti-1 =Ty (7

fori =2,3,...,q (see Fig. 4). If T is the tension in the
rope just before the first segment (what we have called the
free end of the rope), then (7) can be supplemented by

T, =T+ ne™Ty, (To = TH). (7)

It is convenient to rewrite (7) and (7’) as

Sanset  (TasT), 8)
i~ ‘
with the matrix 4 defined by
A = By — nCy, (9a)
Bij = 6i; — €d;—1, (9b)

Fig. 4. Conditions at the
beginning of the ith seg-
ment.

K e™ Tuy

ni-

i
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Cij = eMiby, ). (%¢)

Whenn =0, 4 = B and det A = 1. Let . be such that
detA>0 if0 <5<y, (10a)
detA=0 if n = 9. (10b)

Thus 5, depends upon the configuration of the hitch, and
on the value of the friction parameter e defined in (17). In
the n region defined by (10a), the reciprocal of 4 exists. We
denote it by M:

MA=MB-3C)=B-9OM=1. (1)

B and C defined in (9b) and (9¢) are independent of %, but
M depends upon 7. It is easy to verify that when p = 0, M
is given by

M;0)=0 ifj>i (12a)
M) =1 ifj=i (12b)
M;;(0) = entrsitetniorf j <, (12¢)

If we differentiate (11) with respect to n, we find that
di{(B—nC)—MC=0,
dn

a _ MCM.

dn (13)
Since all matrix elements of M(0) and C are non-negative,
dM (0)/dn given by (13) is non-negative. Thus as » increases
from zero, none of the matrix elements of M will decrease
from their n = 0 values given by (12). Since (13) continues
to apply as long as M exists, we conclude that

Mij(n) 2 1 Cifj=iy 0sqg<y,. (14)
M,-j(n) = gtitnjriteetniog if j < i’

Furthermore, it follows from (12) that
Miy1,;(0) — M;(0) 20,
M;;—1(0) — M;;(0) =0,
and from (13) that

d n
n (Miy1j— M) = kg,l (Mit16 — M )(CM)y,

d n
@ (M;j— — My) = kz=:1 (MO (M j—) — My;).

Arguments similar to the one used to derive (14) then show
that
Miv1,;(n) = My(n)
M;j-1(n) = M;;(n)
Thus no matrix element of M is larger than M,
As long as 0 < 9 < 7, and all matrix elements of M are

non-negative, we can multiply (8) by them without
changing the directions of the inequalities:

(15a)

}O<"<m' (15b)

ki] M i} AT, < To kil M1 = ToMy.
2 M 2 >

Since M is the reciprocal of A, this yields

Ty < ToMy, 0 <9 <n). (16)
Furthermore, the conditions (14) and (15a) guarantee that
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these T} satisfy
T,

=0, (17a)
T2 Ty,

(17b)

so that (16) provides a physically acceptable set of ten-
sions.

The region 0 < 5 < 7. thus corresponds to the low-fric-
tion situation in (5a), in which a hitch will not slip as long
as the tensions in its segments do not exceed certain mul-
tiples of Ty. In particular, if there is no tension in the free
end (T = 0), the only way in which (16) and (17a) can be
simultaneously satisfied is for all the T to vanish, and the
hitch will sustain no tension. Thus the hold-fast condition
cannot be satisfied if 7 is less than n.. We will now show that
if 7 2 7., it is possible to find a nonzero set Ty which satis-

. fies the stability conditions (8), even when Ty = 0.

Let q,-j(n) be the cofactor of A;;(n), so that

i[ A,jakj = §:| A,‘j(d)jk = 6,'k detA. (]8)
j= Jj=
From this it follows that

My;j(n) = ajr(n)/det A, (19)

and since det 4 > 0 when 0 < 5 <., (14) and (15) imply
that

k(1) 2 0 (20a)
a;k+1(n) = aji(n) 0<9<n. (20b)
aj—1..(n) = aj(n) (20c)

In particular, no aj; (n) is larger than a,,(n). When = 7,
detA4 = 0. Then if we define a set T; by

'ijEalj(nC‘)! (21)
Eq. (18) can be written
il A(ne)T; =0, (22)
i=

which is equivalent to (8) with T¢ = 0. Thus if not all the
a;;(n) vanish, the T; defined in (21) are a nontrivial set of
tensions satisfying the stability conditions for the hitch, with
no tension in the free end. And these T}, which satisfy the
To = 0 version of (8) when n = 7., continue to satisfy (8)
when 5 exceeds 7.. This is more easily seen from Egs. (7)
which are equivalent to (8). Thus apart from our proviso
that not all the a;;(n) vanish, we have shown that the
hold-fast condition can be satisfied when, and only when,
n 2 7.

Finally we consider the possibility that all the a;;(n.)
vanish. All the a;;(n), and detA, are polynomials in ». If 7,
is a zero of a;4(n) then a;,4(n) has the form

aig(n) = (n — nc) aln), (23a)

with

a(n:) # 0, rz1. (23b)

Since no a;;(n) exceeds a;4(n) whenever 0 < 5 < 7, it fol-
lows that if the other a;;(n) are written in the form (23), the
corresponding power of (7 — 7.) must be at least as large
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as r. Since the dimension of a is g, it follows that

deta = (n — 1.)°B, (24a)

with

s = qr. (24b)

But if we take the determinant of (18), we find that
deta = (det4)7—!. (25)

Comparison of (24) and (25) shows that det4 vanishes at
7 = n, with a power of (n — .) greater than r. Thus if T;(n)
is defined by

Ti(n) = a;j(n)/(n — n.)’, 2r)

we know that T, (n) approaches a finite positive value a(n.)
when n — 0., Tj(<q)(n) approaches zero, or a positive value
when 4 — n., det4/(n— n.)" approaches zero when n —
7., and so (18) divided by (y — 7.)" yields

j;'Aij(n(‘) Tj(n(') =0 [Tj(nc) < Tj+l(nc)]~ (22’)

We see then, in all cases, when 5 2 7, it is possible to find
a nontrivial set of tensions which satisfy the stability con-
ditions with Ty = 0, whereas when 5 < %, these conditions
can only be satisfied by the trivial solution 7; = 0. The
hold-fast condition, generalizing the condition 2 1/¢ for
the clove hitch, is 5 2 7., with 5. the smallest value of 5 for
which detA vanishes.

The dimension of the matrix A is equal to g, the number
of segments. Since no segment ever begins under the last
segment, the one that leaves the hitch, the last column of
A will consist of a column of ¢ — 1 zeroes over a diagonal
element of 1. Thus detA is unchanged if we strike off this
last column and row. Alternatively, when we calculate the
matrix 4 we need only include the first ¢ — 1 rows and
columns corresponding to the first ¢ — 1 segments. In fact
it is possible to eliminate from the matrix A4 every row and
column referring to a segment that passes over no other
segment. This leads to an equivalent condition to determine

Nl
detE(n.) = 0,
with

i
Eij(77) = 51,], -7 kgl em/\»+n1\-+n,\v_,_|+...+n,--1 6b/\',--

The dimension of E is equal to the number of segments that
pass over other segments, which is usually smaller than the
dimension of A.

V. EXAMPLES

We first apply the general method to the clove hitch il-
lustrated in Fig. 3. The first segment starts at the location
of the small numeral 1 in Fig. 3. This segment encircles the
pole twice, until it passes under itself just after the location
of the small numeral 3. The second segment starts here and
leaves the hitch. Since we can ignore the segment that leaves
the hitch, our matrix 4 is 1 X 1. Segment 1 starts under
segment 1,80 5 = 1. Segment b, (=1) passes over segment
1 one turn beyond the beginning of segment b,,s0m; = 1.
Thus (9) yields

Ay =5],]“77€1 =1 — ne = detA4
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Fig. 5. Ground-line hitch. The arrows indicate the beginnings of the three
segments.

and 7., the smallest zero of detA, is 1 /e. This confirms our
result in Sec. II1.

Closely related to the clove hitch is the ground-line hitch,?
shown in Fig. 5. The values of n;, b;, and m;, calculated as
described in Sec. 1V, are also shown. The matrix A4 is

1 —ne']
A=
[—e' — el 1 r

detd =1 — ne(n + ¢€). (26b)

The ground-line hitch holds fast when ne(n + €) 2 1. Since
e [= exp(27u)] always exceeds 1, it is clear that there is a
range of 7,

(26a)

and so

[e(n+ )] <y <€ (27)

for which the ground-line hitch will hold fast, whereas the
clove hitch will slip. The braided nylon string on a steel rod
referred to in Sec. II (n = 0.2, € = 4) is in this range, and
experiment confirms the predicted superiority of the
ground-line hitch over the clove hitch.

Figure 6 shows a constrictor knot.? Inspection of the
drawing yields the parameters shown in Fig. 6, from which
we calculate

1 0 —ne!
detA = det | -1 1 —ned
0 —¢! 1 — ne!

=1—12e2+¢€, (28)
so that the hold-fast condition can be written
nZn = [e(2+ ] (29)

For the geometry assumed in this paper, in which the di-
ameter of the rope is much less than that of the pole, 5 will
usually be small compared to 1. Thus comparison of (21)
and (29) shows that the constrictor hitch will hold fast with
even less friction than the ground-line hitch.

Note that if we cross out the first row and column of the

Benjamin F. Bayman 188



n; |bi [mi

wm| =]
W
o

A\

Fig. 6. Constrictor knot. The arrows indicate the beginnings of the four
segments.

matrix 4 in (28), we gét the 2 X 2 determinant
] =1-25 (30)

which is the determinant of the 4 matrix for the hitch
shown in Fig. 7. The hold-fast condition for this hitch is 5
= 1/2e. If this condition is satisfied, then the constrictor
knot can hold fast even though 7’| = 0. Similarly, if we cross
out the first two rows and columns of the matrix A4 in (28),
we get the 1 X 1 determinant 1 — ne, so that if n > 1/e¢ the
constrictor hitch can hold fast even though and Ty and T,
= 0. Thus we can distinguish four friction regimes for the
constrictor knot:

det4’ = det [ 1 -
—€ 1 — ne

() n <[e(2+ 917,
hitch slips;
(1) [e(2+ &))" <9 < 1/2e
hitch holds, with tension needed along the entire length of
hitch;
(iii) 1/2e < 9 < 1/¢,
hitch holds, but T can be zero;

(iv) 1/e <,
hitch holds, but 7'; and T can be zero.

In general, by striking out successive rows and columns
from the matrix 4 defined in (9), we get a sequence of
hold-fast conditions, corresponding to increasing friction,
in which the earlier parts of the hitch can be free of ten-
sion.

Comparison of Figs. 6 and 7 shows that the constrictor
knot can be made by giving an extra tuck to the free end of
the abbreviated constrictor knot. Since this tuck will be
under a part of the rope near the end of the hitch, where the
tension is high, it can bring about a large increase in the
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Fig. 7. Abbreviated constrictor knot. This knot is obtained from the
constrictor knot by omitting the first segment.

holding power of the hitch. Figure 8 shows another attempt
to improve abbreviated constrictor knot. In this case det4
is calculated to be

1 — ne 0 0
—e 1 -7
0 —¢

detA4 = det
1 — ne

= (1 —ne)(1 — 29¢). (31)

Suppose that 1 — 27n¢ > 0, so that there is not enough fric-
tion to enable the abbreviated constrictor knot to hold-fast.
Then (1 — 25¢)(1 — ne) will also be positive, so that the extra
loop added in going from Fig. 7 to Fig. 8 has brought us no
improvement in the ability of the hitch to hold fast with little
friction. This extra loop contributes nothing because T, can

LN fbi|m
NENERE
211]3]0
313
4

LN\ 2\
2

3

|
o S’

Fig. 8. Another attempt to improve the abbreviated constrictor knot. The
arrows indicate-the beginnings of the four segments.
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Fig. 9. Hitch will slip if the upper segment is lifted away from the
pole.

only be nonzero if ne = 1 and we are considering a ne < 4
situation. Thus we gain no holding power by adding a fee-
bler disconnected loop. However, we gain considerable
holding power by tucking the free end of the abbreviated
constrictor knot under a later segment of this hitch, as we
do when we form the constrictor knot. It is clear from these
examples that the most effective hitches are those that make
most use of the high tension in the later stages of the hitch
to produce large changes in the tensions of the segments that
start beneath them.

VI. QUALIFICATIONS

We have assumed that when the last segment of a hitch
is pulled the topology of the hitch remains unchanged, while
the tension is transmitted along the hitch. Whether or not
this happens depends upon the topology of the hitch. For
example, the criteria of Sec. IV applied to the hitch shown
in Fig. 9 gives the hold fast condition as ne = 1, the same as
for a clove hitch. However, irrespective of the values of 5
and e, the hitch in Fig. 9 would slip if the tight end of the
rope were lifted out of the plane of the paper, whereas the
clove hitch would continue to hold. Thus when we are
comparing hitches, we must supplement comparisons of 7,
by comparison of the abilities of the hitches to withstand
pulls in various directions. The topological integrity of any
hitch is improved if it is under tension, and instructions for
tying these hitches usually suggest that the rope in each
hitch be pulled tight before the full load is applied.
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(a) (b)

Fig. 10. Effective value of # will be smaller in (a) than in (b), since the
two nearby cords in (a) share the downward pressure of the upper rope.

We have also assumed that a rope suffers no change in
tension when it crosses over another turn, but only when it
is squeezed between an upper turn and the pole. If we relax
this assumption, we have to modify our definition of a seg-
ment to allow segments to start either when the rope passes
under another turn or when it passes over another turn.
When the rope passes over another turn, its change in ten-
sion will be governed by a relation such as (1), with § a small
angle if the diameter of the rope is small compared with the
diameter of the pole. Its change in tension will not depend
upon the tension in the rope it crosses over. We would also
have to modify (2) to take account of the fact that the ten-
sion T in the upper cord is changing as it crosses over the
lower cord.

We have not included in our discussion hitches in which
the rope makes a turn or half-turn about itself, such as
happens at the top of a timber hitch (Fig. 195 of Ref. 2). If
the friction of rope on rope is small, this contact of the rope
with itself can be ignored. Otherwise it can be treated by
means of a multiplicative factor, as in (1).

It should be noted that we have assumed that the same
constant 7 is used in (2) for all crossings. However, it is clear
from Fig. 10 that the effective value of n may be modified
by the proximity of several lower ropes which share the
downward pressure of the upper rope.

It is evident that an accurate treatment of all aspects of
a hitch would be a very complicated task. However, we
believe that the somewhat simplified model discussed in the
carlier sections of this paper illustrates the interplay be-
tween friction and topology in determining the ability of a
hitch to form a self-locking unit that can withstand any
pull.
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